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Elliptic Curve Diffie-Hellman (ECDH)
client “Alice”, server “Bob”, man in the middle “Mallory”
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Elliptic Curve Diffie-Hellman (ECDH) w/ authentication
client “Alice”, server “Bob”, man in the middle “Mallory”
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Signatures/MAC prevent näıve MitM

. . . but how do Alice and Bob decide on the curve?
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Elliptic Curve Diffie-Hellman (ECDH) w/ curve negotiation
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CurveSwap

Nick Sullivan at 32C3 (2015):

“TLS supports a ton of crazy
elliptic curves”

“what if you did a downgrade
attack on that?”

“take the supported curves, and
swap it with the smallest weakest
curves supported by both parties”
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CurveSwap attack
client “Alice”, server “Bob”, man in the middle “Mallory”
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This work

Evaluate feasibility of CurveSwap downgrade attack

I Requires breaking ECDH online for some supported curve

Look at ECDH in TLS, SSH, IPsec (IKE), JWE

Measure elliptic curve usage in hosts and implementations

Punch line: we find many weaknesses in elliptic curve
implementations, but nobody vulnerable to CurveSwap
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Scan measurements

Fast internet scanning lets us study behavior of
publicly accessible hosts.

Curve support across protocols varies widely

Total ECDHE secp224r1 secp256r1 x25519

HTTPS 41.0M 28.8M 2.8% 86.9% 2.6%
SSH 14.5M 7.9M 0.0% 97.8% 77.2%
IKEv1 1.1M 215.4K 66.8% 98.3% 0.0%
IKEv2 1.2M 101.1K 4.1% 97.1% 0.0%

8.5M HTTPS servers chose secp256r1, secp384r1, or
secp521r1, even when not offered by the client.
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Breaking Elliptic Curve Diffie-Hellman

CurveSwap requires breaking ECDH for some supported curve

ks = dlog(aP, bP, )

Known attack vectors

I Solve the discrete logarithm on weak curves

I Invalid point attacks

Need server to reuse key for multiple connections

I Common optimization to reduce server load
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Do servers reuse keys?

Scanned each host on public IPv4 Internet twice in rapid
succession with secp256r1, a popular curve.

Of the TLS hosts supporting secp256r1:

I 5.5M (22%) reused keys at least once

I 640K (2.6%) used the same key as another host
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Solve the discrete logarithm on weak curves

ECDLP: Given and bP, compute b

Best known attack runs in O(
√
n) for curve with n points

TLS supports a ton of weak elliptic curves

I secp160r1 has 80-bit security

I Bitcoin network computes 280 hashes every 11 hours

Out of 4M client hellos:

I sampled from Cloudflare

I 682.6K (16.3%) support
secp160r1

Out of 41M servers from scans:

I 276.2K (0.67%) support
secp160r1

I 8.1K (2.9%) also reused keys

I only 2 reused after 25 hours
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Invalid point attacks

Some implementations are “curve blind”

Lack the validation checks to differentiate between and

bP,
b

P on

bP = ks

MACks (data)

break(MACks (data)) =⇒ learn some bits of b

Repeat many times =⇒ find b using Chinese Remainder Theorem
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Countermeasures

The countermeasures against these attacks are well known, and
built into all most ECDH standards:

RFC 4492 (TLS): “The server retrieves the client’s
ephemeral ECDH public key from the
ClientKeyExchange message and checks that it is on
the same elliptic curve as the server’s ECDH key.”

RFC 5656 (SSH): “All elliptic curve public keys
MUST be validated after they are received”

RFC 6989 (IKEv2): “A receiving peer MUST check
that its peer’s public key value is valid”

RFC 7516, 7518 (JWE): . . . no warning?
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Do libraries validate public keys?

Many TLS libraries don’t validate for ECDH: [JSS ESORICS ’15]

Similar for FFDH in TLS, SSH, IPsec: [VASCFHHH NDSS ’16]

Many JWE libraries don’t validate:

Library Vulnerable

jose4j Yes
Nimbus JOSE+JWT Yes
Apache CXF No
go-jose Yes
jose2go Yes
node-jose Yes
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Do hosts validate public keys?

Scanning methodology: test for two types of curve blindness

I send order-5 point on invalid curve related to secp256r1

I send order-5 point on twist of secp256r1

Protocol Accept
Accept

+ Reuse Keys

HTTPS 188.7K (0.7%) 0 (0.0%)
SSH* 4.1K (0.1%) 0 (0.0%)
IKEv1* 530 (0.2%) 0 (0.0%)
IKEv2* 4.1K (4.0%) 0 (0.0%)

* Overestimates due to scanning limitations
Scans from November 2016
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Modern advancements in ECC

“New” DJB curves: Curve25519, Curve41417, Curve448

I Montgomery/twisted Edwards curves

I By design, no twist or invalid curve attacks

I Curve25519 supported by 77.2% of SSH, 2.6% of HTTPS

I TLS 1.3 includes Curve25519 and Curve448

17 / 19



Takeaways

Standards writers:

I Easy for developers to skip validation checks

I Minimize complexity of curve support

I Downgrade protection is essential in protocol design

Software developers:

I Cryptography is hard, but it is easy to prevent known attacks

I Cryptographic validation should be part of your test suite
(https://github.com/google/wycheproof)

Academic researchers:

I Internet scanning is an effective “black box” measurement tool

I “Negative” results can and should be published

Questions?
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